Quantum References
Slater Determinant
\[\Psi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) & \dots & \chi_N(\mathbf{x}_1) \\ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) & \dots & \chi_N(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_1(\mathbf{x}_N) & \chi_2(\mathbf{x}_N) & \dots & \chi_N(\mathbf{x}_N) \end{vmatrix}\]Eigenvector and Eigenvalues
Given a matrix \(\mathbf{A}\), the eigenvector equation is:
\[\mathbf{A} \mathbf{v} = \lambda \mathbf{v}\]Finding Eigenvalues:
To find the eigenvalues \(\lambda\), solve the characteristic equation:
\[\det(\mathbf{A} - \lambda \mathbf{I}) = 0\]Finding Eigenvectors:
Once the eigenvalues are determined, substitute each \(\lambda\) into the equation:
\[(\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = 0\]Solve for the eigenvector \(\mathbf{v}\).
Enjoy Reading This Article?
Here are some more articles you might like to read next: