Electrodynamics References
Maxwell’s Equations
In General:
\[\begin{aligned} \nabla \cdot \mathbf{E} &= \frac{1}{\epsilon_0} \rho \\ \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \\ \nabla \cdot \mathbf{B} &= 0 \\ \\ \nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{aligned}\]In Matter:
\[\begin{aligned} \nabla \cdot \mathbf{D} &= \rho_f \\ \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \\ \nabla \cdot \mathbf{B} &= 0 \\ \\ \nabla \times \mathbf{H} &= \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t} \end{aligned}\]Auxillary Fields:
\[\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}\] \[\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}\]In Linear Media:
\[\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}, \quad \mathbf{D} = \epsilon \mathbf{E}\] \[\mathbf{M} = \chi_m \mathbf{H}, \quad \mathbf{H} = \frac{1}{\mu} \mathbf{B}\]Potentials
\[\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}\]Lorentz Force Law
\[\mathbf{F} = q (\mathbf{E} + \mathbf{v} \times \mathbf{B})\]Energy, Momentum, and Power
Energy: \(\quad U = \frac{1}{2} \int \left( \epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) d\tau\)
Momentum: \(\quad \mathbf{P} = \epsilon_0 \int (\mathbf{E} \times \mathbf{B}) \, d\tau\)
Poynting Vector (Power per Area): \(\quad \mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})\)
Larmor: \(\quad P = \frac{\mu_0}{6 \pi c} q^2 a^2\)
Enjoy Reading This Article?
Here are some more articles you might like to read next: